

Welcome to Cantal’s documentation!

Contents:

	Concepts
	Overview

	Background

	Design Decisions

	Discovery

	Aggregated Metrics

	Installation
	Ubuntu

	Configuration
	Daemon Configuration

	Carbon Integration

	API
	Policy

	Memory Map Protocol
	Motivation

	Overview of Files and Discovery

	Metadata File Format

	Values File Format

	Data Types

	Cantal Changes by Version
	Cantal 0.6.9

	Cantal 0.6.8

	Cantal 0.6.7

	Cantal 0.6.6

	Cantal 0.6.5

	Cantal 0.6.4

	Cantal 0.6.3

	Cantal 0.6.2

	Cantal 0.6.1

	Cantal 0.6.0

Indices and tables

	Index

	Module Index

	Search Page

Concepts

Overview

The Cantal is a monitoring system designed specifically for real-time
measuring and load-balancing distributed computing clusters.

The essential part of cantal is a Cantal Agent it does the following
things:

	Scans for local metrics at 2 second interval

	Preserves one hour history of all metrics data with 100% precision
(compressed)

	Provides web interface for viewing local metrics

	Has peer to peer discovery mechanism

	On demand provides aggregated statistics over cluster

Additional features:

	Cantal is aware of linux containers

	Almost zero-cost connunication between processes and agent

	Written in rust, so can track thousands of metrics with 2 second precision
in less than couple of percents of a single CPU core

The project also consists of:

	Protocol to submit data to agent at nearly zero cost

	Command-line tool to view data locally without running agent

Background

Since Cantal is designed for real-time load balancing, it has very strong and
very specific requirements:

	Very high precision (cantal scans at 2 second interval, while common case
is about a minute interval, very rarely interval is 10 seconds or less)

	Similarly very fast collection of metrics across large cluster

	Discovering trends quickly (i.e. having 30 value snapshots per minute we can
find out load growth in a fraction of minute)

	High availability (no master, quorum or similar)

	Being able to observe individual nodes in case of partitioning

	Lightweight

Design Decisions

Here is short roundup of all the important design decisions. Some of them
are described in detail in the following sections.

Agent has embedded web server. So you can point your browser to:

http://node.domain.in.local.network:22682

..and see all the statistics on the node.

Agent stores history locally. So we don’t loose stats in case of
network failure

Agent has peer to peer gossip-like discovery with UDP. So we don’t rely on
any other discovery mechanism when time comes to gather metrics over cluster.
Note: we do use UDP only for discovery, so we don’t loose statistics when
network is lossy.

You can ask any instance of agent to get metrics for whole cluster. This
is how we allow to get data over whole cluster with a single HTTP request. But
we do it lazily, so that we don’t have full mesh of connections. I.e. when
first client asks, we connect to every node by TCP and subcribe for metrics.

Discovery

We have gossip-like peer to peer discovery. You need to add a peer address at
any node and every node will know it.

[image: _images/udp_discovery.svg]We use UDP for peer discovery. It works by sending ping packets between
nodes. Each packet contains some critical info about current node and info
about few randomly selected known peers.

[image: _images/udp_packet.svg]Each node sends 5 ping packets with 10 neighbour nodes each second. Each
ping packet receives pong packet with other 10 nodes. Overall it’s not very
large number of packets, and packets are distributed uniformly across the
nodes. This allows to discover even large network with thousand of nodes in
few dozens of seconds.

In the future we plan to discover physical topology using UDP packets. In turn
this allows to display graph and provide diagnostics for different kinds of
network partitions (including assymmetric partitions, bridge nodes, etc.)

Note that we use UDP exclusively for peer discovery. This allows us to avoid
having a full mesh of TCP connections. But we don’t use UDP for transferring
metrics, so we don’t lose statistics when network suddenly becomes lossy.
Not being able to reach some nodes via UDP in lossy network is definitely the
expected outcome and will help diagnose problems too.

Aggregated Metrics

To have efficient cluster management we consider imporant two points:

	Resource manager don’t have to gather from each node, they must be pushed
as fast as possible

	We don’t want to constrain failover and/or lower the availability of the
resource manager. I.e. cantal’s data should be virtually always available
for resource manager.

When we talk about resource manager (RM) we talk about any software which
consumes metrics and implements some resource allocation decisions. Obviously
resource management is out of scope of the cantal itself.

So to get metrics RM connects to any cantal agent and requests statistics for
all it’s peers.

[image: _images/resource_manager1.svg]On first request for some monitoring data Cantal Agent does the following:

	Enables remote peer publish-subscribe subsystem

	Connects to every known peer via bidirectional protocol (WebSockets in the
current implementation)

	Subscribes on each node for the subset of data requested by client

	Fetches chunk of history for these metrics from every node

Note

UDP-based peer tracking and dicovery works always. So every agent
does know all it’s peers. We just activate TCP-based reliable
publish-subscribe for metrics at request.

Other client might ask another node and that node will seamlessly provide the
stats and historical data.

[image: _images/resource_manager2.svg]The only practical limitation of it is the that running a full-mesh of TCP
connections is quite inefficient. So you should poll a single node while it’s
still available and switch to another one only when it’s not.

Warning

It’s hard to overstate that you should not poll every node in
turn, otherwise you will have a full mesh of connections and every node will
send updates to each other every two seconds.

Viewing web interface for local metrics and polling for them is
perfectly OK on any and every node.

In perfect world we expect that resource manager will poll an agent on
localhost, and has failover resource manager node with own cantal agent.

[image: _images/resource_manager_failover.svg]

Installation

Ubuntu

You need rust [http://rust-lang.org] compiler:

wget https://static.rust-lang.org/dist/rust-1.1.0-x86_64-unknown-linux-gnu.tar.gz
tar -xzf rust-1.1.0-x86_64-unknown-linux-gnu.tar.gz
cd rust-1.1.0-x86_64-unknown-linux-gnu
sudo ./install.sh

Or you may use instructions on official website [http://www.rust-lang.org/install.html]

Additional dependencies:

sudo apt-get install build-essential libssl-dev

Then just download and build project with cargo:

wget https://github.com/tailhook/cantal/archive/staging.tar.gz
cd cantal-staging
cargo build --release

Note

We build from staging branch, because that contains javascripts
already built. Building javascripts is a little bit more complex process,
you shouldn’t do, unless you’re developing cantal itself.

Then you may either install it with:

make install

Optionally DESTDIR and PREFIX environment vars work.

Or you can build a package with:

checkinstall --default \
 --pkglicense=MIT --pkgname=cantal \
 --pkgversion="$(cat version.txt)" \
 --requires="libssl1.0.0"
 --nodoc --strip=no \
 make install

Additionally you need an upstart or systemd script to start cantal
as a service. Here is one example:

start on runlevel [2345]
respawn
exec /usr/bin/cantal-agent --host 0.0.0.0 --port 22682 \
 --storage-dir /var/lib/cantal

Configuration

	Daemon Configuration
	Cluster Setup

	Carbon Integration
	Configuration

	Metrics Layout

Daemon Configuration

We’re doing our best to keep cantal working without any configuration. But
for achieving complex tast we need some configuration.

Important command-line options:

	Enable cluster setup --cluster-name=your-name. Name must be the same
on all nodes in the cluster (i.e. all nodes which should see each other)

	Keep some metrics for restart --storage-dir=/var/lib/cantal. In
clustered setup this also stores list of peers, so that if all the nodes
are restarted simultaneously, they discover each other

Cluster Setup

Another piece of cluster setup is: introduce nodes to each other:

curl http://some.known.host:22682/add_host.json -d '{"addr": "1.2.3.4:22682"}'

This only works if cluster-name matches and after nodes are able to
interchange ping-pong packets between each other (also machine-id must be
different which is usually provided by the system).

Carbon Integration

Carbon [http://graphite.wikidot.com/] integration allows to use cantal as an agent for carbon, so you
can view the data in graphite [http://graphite.wikidot.com/] or any other carbon-compatible system (such
as a graphana [http://grafana.org/])

Basically this allows you to view recent data in cantal and use carbon for
archival of statistics

Note

The support is currently far from be comprehensive. Only some data
can be sent to carbon. Sending whole collected statistics to graphite is
too much, so we adding features one by one.

Configuration

Cantal starting with v0.3.0, has a default configuration directory
/etc/cantal. You need to put some configuration file there:

/etc/cantal/localhost.carbon.yaml
host: localhost
port: 2003
interval: 10
enable-cgroup-stats: true
enable-application-metrics: true

All configurations which end with .carbon.yaml will be read. Multiple
configurations may be used, each configuration is a separate connection with
it’s own set of metrics.

Options:

	host

	(required) The IP address to send data to. Hostnames are not
supported yet.

	port

	(default 2003) Port where carbon [http://graphite.wikidot.com/] listens with text protocol.
The default matches the same of carbon.

	interval

	(default 10) Interval of sending data to carbon. The cantal’s
collection interval is 2 seconds for most metrics. But there is no
much value of sending such detailed statistics to carbon. Cantal will
provide 1 hour of highest precision history in it’s own interface and send
averages of the values to a carbon.

	enable-cgroup-stats

	(default false) Send data about cgroups to carbon

	enable-application-metrics

	(default false) Send data with application metrics to carbon. The
application must have an unique CANTAL_APPNAME in environment to
have metrics delivered to carbon. Anyway CANTAL_APPNAME is ignored
if application is in cgroup.

Metrics Layout

By default cantal sends nothing, even if connection params are set.

CGroup statistics (enabled with enable-cgroup-stats):

	cantal.<CLUSTER_NAME>.<HOSTNAME>.cgroups.<GROUP_NAME>.<METRIC_NAME>

	Metrics (all represent the sum for all processes in the group):

	vsize – virtual memory size

	rss – resident set size

	num_processes – total number of processes in the group

	num_threads – total number of threads in the group

	user_cpu_percent – percentage of CPU spent in user mode

	system_cpu_percent – percentage of CPU spent in system mode

	read_bps – average bytes per second read on disk

	writes_bps – average bytes per second written to disk

	Ggroup is a dot-delimited hierarchy of cgroups with systemd-like
suffixes removed, for example:
/sys/fs/cgroup/systemd/system.slice/nscd.service will turn
into system.nscd

	The .swap and .mount (systemd-specific) groups are skipped

	The root group user (upstart- and systemd-specific) group is ignored

	If the process is in group a.b it will not count for group a,
the statistics for a contains only processes immediately in the group

	cantal.<CLUSTER_NAME>.<HOSTNAME>.cgroups.<GROUP_NAME>.states.<STATE_NAME>.<METRIC_NAME>
– application-submitted metrics which have a state value

	cantal.<CLUSTER_NAME>.<HOSTNAME>.cgroups.<GROUP_NAME>.groups.<STATE_NAME>.<METRIC_NAME>
– application-submitted metrics which have a group value

Application metrics that are outside of cgroups have similar layout but do not
have any system metrics yet (enabled with enable-application-metrics):

	cantal.<CLUSTER_NAME>.<HOSTNAME>.apps.<APPLICATION_NAME>.states.<STATE_NAME>.<METRIC_NAME>
– application-submitted metrics which have a state value

	cantal.<CLUSTER_NAME>.<HOSTNAME>.apps.<APPLICATION_NAME>.groups.<STATE_NAME>.<METRIC_NAME>
– application-submitted metrics which have a group value

CLUSTER_NAME is no-cluster if no --cluster-name=something is
specified in the command-line.

APPLICATION_NAME is the value of CANTAL_APPNAME environment variable
that exists alongside with the CANTAL_PATH.

API

Policy

Currently Cantal has /v1/ API. We don’t increment API version on backwards
compatible changes. The following is deemed backwards-compatible:

	Addition of new resources

	Addition of new fields in structures

	Deprecation (but not removal) of resources

	Deprecation (but not removal) of fields in structures

	New formats of output (with some negotiation way, i.e. Accept header)

The (backwards-compatible) changes in API are listed here by version of a
Cantal agent itself.

Until cantal reaches 1.0 it’s only guaranteed to support single API version,
after 1.0 we will support previous version of API for several releases after
new API is introduced.

Memory Map Protocol

Motivation

Cantal scans the whole system at 2 second interval. This includes metrics of
your application. If cantal would poll applications by some kind of remote
procedure call (RPC), it would rely too much on the application responsiveness
to provide fine-grained statistics. For many synchronous applications it just
doesn’t work, because it may wait more than 2 seconds for a database on occassion).

Cantal is implemented with another kind of inter-process communication (IPC),
the shared memory. As you will see later in the text it requires almost zero
configuration and allows efficient collection of statistics for most kinds
of programs. For scripting languages it’s also practially zero-cost. For
fully-threaded programs it’s usually as cheap as any other way you could
implement.

For scripting languages using shared memory appoach described here also allows
to dive into the application that is currently slow or unresponsive.

Overview of Files and Discovery

The metrics are discovered by cantal by scanning environment variables of
running processes. Whenever it sees CANTAL_PATH in environment the
metrics are gathered from there.

For CANTAL_PATH=/run/myapp, catal will look into:

	/run/myapp.meta for metadata (names size and alignemnt) for metrics

	/run/myapp.values for metrics

Here is a short example of the contents of the meta file:

counter 8: {"metric": "requests.number"}
counter 8: {"metric": "requests.duration", "unit": "ms"}

It contains two 8 byte (64bit) unsigned integers, which are growing counters.
Here is the respective .values file (displayed in a format of
hexdump -C):

00000000 61 00 00 00 00 00 00 00 67 62 00 00 00 00 00 00 |a.......gb......|

Here we can see that there have been 97 requests (0x61) each lasts of
almost 260 milleconds on average (0x6261/0x61).

The files must reside on some in-memory file system (tmpfs). On typical
system /run folder is a good place. On some systems /tmp is a tmpfs
too, but be careful not to put it into HDD or SSD. In docker [http://docker.com] containers you
need to map some tmpfs folder from host system (example command line:
docker run -v /run/containers/my1:/run/cantal -e CANTAL_PATH=/run/cantal ...)
In container running by lithos [http://lithos.readthedocs.org] a !Statedir is a good place.

Metadata File Format

File format of the meta data is simple: every next line is the metric (or a
padding). Format of the line:

TYPE NUMBER_OF_BYTES TYPE_PARAM: JSON_METADATA

For example:

level 8 signed: {"metric": "memoryusage"}
counter 8: {"metric": "requests_processed"}

The TYPE_PARAM is optional and is currently used for level type, which
can be one of the signed or float (unsigned will be added in
future)

The JSON_METADATA field is a subset of a JSON, and is currently limited to
(we may extend it to a larger subset of or full JSON later):

	Serialized data should contain no newlines (you can’t pretty print json)

	Only a dictionary (object) with string keys and string values is supported

The keys and the values of the dictionary might be arbitrary. But the whole
set of keys must be unique for the file.

An a padding is just:

pad 123

Where 123 is the number of bytes.

The values of the respective lengths are stored consecutively in the
.values file in the same order as entries in metadata. The pad entries
might be used to align counters to addresses of multiples of 8, or whatever is
needed for efficient accounting.

Metadata file is imutable. To create a metadata file you must write to
a temporary name then do an atomic rename operation to put it to the right
path.

Values File Format

Values file is a binary file that contains raw values in host byte order
written consecutively one after another with actually any file structure,
or in other words with the structure defined in metadata file. For example,
if we have a metadata of:

counter 8: {"metric": "requests.number"}
counter 8: {"metric": "requests.duration", "unit": "ms"}
pad 48
state 64: {"value": "request.sql.request"}

There are exactly:

	8 bytes, integer in host byte order, counter of the number of requests

	8 bytes, integer in host byte order, sum of the duration of all requests

	48 bytes of padding, any garbage can be there, but usually just zeros

	64 bytes state, first bytes of the sql request that is currently going on

The file size is 128 bytes. As you can see the state is aligned to 64 bytes,
because this makes it another CPU cache line. This means two processors can
write counters and state simultatenously without any kind of contention. This
is very CPU-dependent and optional for file format, but usually some kind of
padding is implemented by the implementation.

Overall, the structure of the file is implemented this way so that program
can atomically adjust any counter directly in shared memory without ever
duplicating metrics or delaying the statistics submission (for some
very fast and heavy-threaded programs it may still be a lot of contention and
traditional technics may be applied here, but please do benchmarks first).

Data Types

Data types that are currently supported by cantal agent:

	Type Name

	Allowed Sizes

	Alignment
(recommended)

	Description

	counter

	8 bytes (64bit)

	8 bytes

	A 64bit ever-growing counter.

	level

	8 bytes (64bit)

	8 bytes

	A current value of something,
may grow or decrease

	state

	16-65535 bytes

	64 bytes

	An arbitrary string value that
is visible in cantal. No
history of it is stored.

	pad

	1-65535 bytes

	–

	No data

More types and sizes will be implemented later.

The counter value is a most useful type. You should increment the
value of counter using atomic operations (unless you have a GIL so any small
write is atomic) and never write whole value to it. It’s fine to initialize
counter value to zero on application restart, you don’t need to store value
somewhere.

Good use cases for counter are:

	Number of requests

	Total duration of requests

	Tasks processed

From the above you can derive the following values, which you should not
write by the application, but they are calculated by a cantal itself:

	The number requests per second (or any other unit in time)

	The average duration of each request

	Tasks processed per second

Good use cases for level are:

	Memory used by object pool

	Current queue size

Don’t use level for things that are number of operations per second or
similar things. Use counter instead. This allows correct statistics even
if collection interval changes, when something is slow and so on.

Cantal Changes by Version

Cantal 0.6.9

	Bugfix: previously cantal sometimes skipped some processes because scanning
/proc is not atomic. Now we decrease the issue by making scan fast and
doing it twice.

Cantal 0.6.8

	Bugfix: machine uptime and process’ uptimes were broken in UI

Cantal 0.6.7

	Bugfix: previously cantal could crash when time jumps backwards. Currently,
it waits (in metrics scanner code) if delta is < 10 sec and crashes with
clear log message for large time jumps.

Cantal 0.6.6

	Bugfix: when a CANTAL_PATH referring to a same file is encountered in
multiple processes we no longer duplicate metrics

Cantal 0.6.5

	Feature: add peers graphql field

Cantal 0.6.4

	Feature: add local.cgroups graphql endpoint

	Feature: add local.processes graphql endpoint

Cantal 0.6.3

	Bugfix: add num_peers, num_stale back to /status.json, same
fields added to graphql endpoint

Cantal 0.6.2

	Bugfix: larger timeouts for incoming http requests

	Bugfix: add version back to /status.json

Cantal 0.6.1

	Bugfix: fix JS error on /local/peers page

Cantal 0.6.0

	We reworked network subsystem to use tokio instead of home-grown async, this
looses some features for now, but is an important step for future

	Breaking: remote subsystem doesn’t work, including the whole /remote
route, we will be working to add feature back soon

	Feature: add graphql API (only status for now)

	Breaking: /status.json contains less data, use graphql API

Index

Exit Codes

	81 – storage thread crashes

	82 – scan thread fails

	83 – tokio thread fails

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Cantal’s documentation!

 		
 Concepts

 		
 Overview

 		
 Background

 		
 Design Decisions

 		
 Discovery

 		
 Aggregated Metrics

 		
 Installation

 		
 Ubuntu

 		
 Configuration

 		
 Daemon Configuration

 		
 Cluster Setup

 		
 Carbon Integration

 		
 Configuration

 		
 Metrics Layout

 		
 API

 		
 Policy

 		
 Memory Map Protocol

 		
 Motivation

 		
 Overview of Files and Discovery

 		
 Metadata File Format

 		
 Values File Format

 		
 Data Types

 		
 Cantal Changes by Version

 		
 Cantal 0.6.9

 		
 Cantal 0.6.8

 		
 Cantal 0.6.7

 		
 Cantal 0.6.6

 		
 Cantal 0.6.5

 		
 Cantal 0.6.4

 		
 Cantal 0.6.3

 		
 Cantal 0.6.2

 		
 Cantal 0.6.1

 		
 Cantal 0.6.0

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

